Generalized intersection bodies are not equivalent
نویسندگان
چکیده
منابع مشابه
Generalized Intersection Bodies Are Not Equivalent
In [Kol00], A. Koldobsky asked whether two types of generalizations of the notion of an intersection-body, are in fact equivalent. The structures of these two types of generalized intersection-bodies have been studied in [Mil06b], providing substantial evidence for a positive answer to this question. The purpose of this note is to construct a counter-example, which provides a surprising negativ...
متن کاملIntersection Bodies and Generalized Cosine Transforms
Intersection bodies represent a remarkable class of geometric objects associated with sections of star bodies and invoking Radon transforms, generalized cosine transforms, and the relevant Fourier analysis. We review some known facts and give them new proofs. The main focus is interrelation between generalized cosine transforms of different kinds and their application to investigation of certai...
متن کاملNon-intersection Bodies All of Whose Central Sections Are Intersection Bodies
We construct symmetric convex bodies that are not intersection bodies, but all of their central hyperplane sections are intersection bodies. This result extends the studies by Weil in the case of zonoids and by Neyman in the case of subspaces of Lp.
متن کاملAn example of $,-equivalent spaces which are not &-equivalent
We construct an example of two countable spaces X and Y such that the spaces C,‘(X) and CG (Y) are homeomorphic and the spaces C,(X) and C,(Y) are not homeomorphic. o 1998 Elsevier Science B.V.
متن کاملIntersection Bodies and Valuations
All GL (n) covariant star-body-valued valuations on convex polytopes are completely classified. It is shown that there is a unique nontrivial such valuation. This valuation turns out to be the so-called “intersection operator”—an operator that played a critical role in the solution of the Busemann-Petty problem. Introduction. A function Z defined on the set K of convex bodies (that is, of conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2008
ISSN: 0001-8708
DOI: 10.1016/j.aim.2007.11.007